If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2+30x+1=0
a = 64; b = 30; c = +1;
Δ = b2-4ac
Δ = 302-4·64·1
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{161}}{2*64}=\frac{-30-2\sqrt{161}}{128} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{161}}{2*64}=\frac{-30+2\sqrt{161}}{128} $
| 1/2y+5=18 | | 5w+7=4–8w | | f-7=-8 | | 7y+21=-2(5y-2) | | 8(h-1)=6h=4=2h | | 13x=x-60 | | X×3-2=y | | 30=1.5y+12 | | Y=9+x3 | | 8p+2-2p+3=35 | | 7a+1-10=61 | | 2n=4(n-30) | | 25m+7=42+18m | | 5n-3n+10=20 | | 32=3d+8 | | 8x^2xx4^3x-1=16x | | 5k-2k=21 | | 6v+34=8(v+3) | | 63=5x-6+4x | | 4+x+4+x=4x | | 10n^2+23n+12=0 | | -4+4n=56 | | z/7+5=5 | | -3x-9x=-9x-8 | | x-17.3=-3.8 | | 5.8g+7=1.8g+27 | | 10n^2+27n+12=0 | | 17=d/2+29 | | x+3.9=-7.5 | | -9+7v=26 | | 16x-3=4x+45 | | x+27=2x+26 |